
Tutorial Notes 12

1. Find the outward flux of F = (x2, y2, z2) across the boundaries of the following re-

gions:

(a) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1;

(b) −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1;

(c) x2 + y2 ≤ 4, 0 ≤ z ≤ 1.

Solutions:

divF = 2x+2y+2z. By the divergence theorem, it suffices calculate the integrals of

divF on these regions, which are denoted by Ω1, Ω2, Ω3.
(a) ∫

Ω1

(2x+ 2y + 2z) dx dy dz = 6

∫
Ω1

x dx dy dz = 6

∫ 1

0

∫ 1

0

∫ 1

0

x dx dy dz = 3.

(b) By symmetry, the integral vanishes.

(c) By symmetry, ∫
Ω3

x dx dy dz =

∫
Ω3

y dx dy dz = 0.

It suffices to calculate ∫
Ω3

2z dx dy dz,

which is equal to, in cylindrical coordinates,∫ 2π

0

∫ 2

0

∫ 1

0

2zr dz dr dθ = 4π.

2. Find the outward flux of F = (2xz,−xy,−z2) across the boundary of the region:

y + z ≤ 4, 4x2 + y2 ≤ 16, x, y, z ≥ 0.

Solutions:

divF = −x. By the divergence theorem, it suffices to calculate∫ 4

0

∫ 4−y

0

∫ √
4−y2/4

0

−x dx dz dy,
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which is equal to∫ 4

0

∫ 4−y

0

(
y2

8
− 2

)
dz dy =

∫ 4

0

(4− y)

(
y2

8
− 2

)
dy = −40

3
.

3. (a) Prove that the outward flux of F = (x, y, z) across a boundary of a region is three

times the volume of the region.

(b) Prove that for a smooth closed surface, F can not be orthogonal to the normal

vector everywhere.

Solutions:

(a) Due to divF = 3 and the divergence theorem, the conclusion follows immediately.

(b) Assume that F is orthogonal to the normal vector everywhere, then the outward

flux of F vanishes, which is a contradiction.

4. Consider the curved cube Q: 0 ≤ z ≤ f(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Suppose that

F = (x,−2y, z + 3) and the outward flux of F across the side x = 1 is 1 and across

the side y = 1 is −3. Find the outward flux across the top.

Solutions:

Since divF = 0, according to the divergence theorem, the total outward flux of F is 0.

Hence it suffices to calculate the outward fluxes across the other five sides. We have

known the fluxes across the sides x = 1, y = 1, so we only need to find the fluxes

across the sides x = 0, y = 0, z = 0, which are denoted by S1, S2, S3. We have∫
S1

F · n dS = 0;∫
S2

F · n dS = 0;∫
S3

F · n dS = −3.

Therefore the flux of the top is 5.

5. Prove the vector field identities:

(a) ∇× (F1 × F2) = (F2 · ∇)F1 + (∇ · F2)F1 − (F1 · ∇)F2 − (∇ · F1)F2;

(b) ∇(F1 · F2) = (F1 · ∇)F2 + (F2 · ∇)F1 + F1 × (∇× F2) + F2 × (∇× F1),

where (F · ∇)G means directional derivatives along F for each component of G.

Solutions:

To make the proof clear we useX and Y to denote the two vector fields and to simplify

the notationswe use f,i to denote ∂if . Moreover, since the three components are similar,
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we only examine the first component.

(a) First

X × Y = (X2Y 3 −X3Y 2, X3Y 1 −X1Y 3, X1Y 2 −X2Y 1).

Then it follows that

[∇× (X × Y )]1

= (X1Y 2 −X2Y 1),2 − (X3Y 1 −X1Y 3),3

= Y 2X1
,2 + Y 2

,2X
1 −X2Y 1

,2 −X2
,2Y

1 −X3Y 1
,3 −X3

,3Y
1 + Y 3X1

,3 + Y 3
,3X

1

= (Y 2X1
,2 + Y 3X1

,3) + (Y 2
,2X

1 + Y 3
,3X

1)

− (X2Y 1
,2 +X3Y 1

,3)− (X2
,2Y

1 +X3
,3Y

1)

= (Y · ∇)X1 + (∇ · Y )X1 − Y 1X1
,1 − Y 1

,1X
1

− (X · ∇)Y 1 − (∇ ·X)Y 1 +X1Y 1
,1 +X1

,1Y
1

= (Y · ∇)X1 + (∇ · Y )X1 − (X · ∇)Y 1 − (∇ ·X)Y 1.

(b) First

∇× Y = (Y 3
,2 − Y 2

,3, Y
1
,3 − Y 3

,1, Y
2
,1 − Y 1

,2).

Then

[X × (∇× Y )]1 = X2(Y 2
,1 − Y 1

,2)−X3(Y 1
,3 − Y 3

,1)

= X2Y 2
,1 +X3Y 3

,1 − (X · ∇)Y 1 +X1Y 1
,1.

Similarly,

[Y × (∇×X)]1 = Y 2(X2
,1 −X1

,2)− Y 3(X1
,3 −X3

,1)

= Y 2X2
,1 + Y 3X3

,1 − (Y · ∇)X1 + Y 1X1
,1.

Hence

[X × (∇× Y )]1 + [Y × (∇×X)]1 + (X · ∇)Y 1 + (Y · ∇)X1

= X1Y 1
,1 +X2Y 2

,1 +X3Y 3
,1 + Y 1X1

,1 + Y 2X2
,1 + Y 3X3

,1

= (X · Y ),1.

Remark 1

Another method could also deal with vector field identities. First we have the following

observations. Let εijk be the sign of the permutation (ijk) (if (ijk) contains repeated

elements, then εijk = 0). Then

(X × Y )i =
∑
jk

εijkX
jY k,
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(∇×X)i =
∑
jk

εijkX
k
,j.

Moreover ∑
i

εijkεist = δjsδkt − δjtδks,

where

δij =

 1 i = j,

0 i ̸= j.

Now we use these facts to prove (a) as an example.

[∇× (F 1 × F 2)]i =
∑
jk

εijk(F
1 × F 2)k,j

=
∑
jkst

εijkεkst(F
1
s F

2
t ),j

=
∑
jst

(δisδjt − δitδjs)(F
1
s F

2
t ),j

=
∑
j

(F 1
i F

2
j ),j −

∑
j

(F 1
j F

2
i ),j

=
∑
j

F 2
j,jF

1 +
∑
j

F 2
j F

1
i,j −

∑
j

F 1
j,jF

2
i −

∑
j

F 1
j F

2
i,j

= (∇ · F 2)F 1
i + (F 2 · ∇)F 1

i − (∇ · F 1)F 2
i − (F 1 · ∇)F 2

i .
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