Tutorial Notes 12

1. Find the outward flux of $F=\left(x^{2}, y^{2}, z^{2}\right)$ across the boundaries of the following regions:
(a) $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$;
(b) $-1 \leq x \leq 1,-1 \leq y \leq 1,-1 \leq z \leq 1$;
(c) $x^{2}+y^{2} \leq 4,0 \leq z \leq 1$.

Solutions:
div $F=2 x+2 y+2 z$. By the divergence theorem, it suffices calculate the integrals of $\operatorname{div} F$ on these regions, which are denoted by $\Omega_{1}, \Omega_{2}, \Omega_{3}$.
(a)

$$
\int_{\Omega_{1}}(2 x+2 y+2 z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=6 \int_{\Omega_{1}} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=6 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=3 .
$$

(b) By symmetry, the integral vanishes.
(c) By symmetry,

$$
\int_{\Omega_{3}} x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\int_{\Omega_{3}} y \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=0 .
$$

It suffices to calculate

$$
\int_{\Omega_{3}} 2 z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z,
$$

which is equal to, in cylindrical coordinates,

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{1} 2 z r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=4 \pi
$$

2. Find the outward flux of $F=\left(2 x z,-x y,-z^{2}\right)$ across the boundary of the region: $y+z \leq 4,4 x^{2}+y^{2} \leq 16, x, y, z \geq 0$.

Solutions:

div $F=-x$. By the divergence theorem, it suffices to calculate

$$
\int_{0}^{4} \int_{0}^{4-y} \int_{0}^{\sqrt{4-y^{2} / 4}}-x \mathrm{~d} x \mathrm{~d} z \mathrm{~d} y
$$

which is equal to

$$
\int_{0}^{4} \int_{0}^{4-y}\left(\frac{y^{2}}{8}-2\right) \mathrm{d} z \mathrm{~d} y=\int_{0}^{4}(4-y)\left(\frac{y^{2}}{8}-2\right) \mathrm{d} y=-\frac{40}{3}
$$

3. (a) Prove that the outward flux of $F=(x, y, z)$ across a boundary of a region is three times the volume of the region.
(b) Prove that for a smooth closed surface, F can not be orthogonal to the normal vector everywhere.

Solutions:

(a) Due to $\operatorname{div} F=3$ and the divergence theorem, the conclusion follows immediately.
(b) Assume that F is orthogonal to the normal vector everywhere, then the outward flux of F vanishes, which is a contradiction.
4. Consider the curved cube Q : $0 \leq z \leq f(x, y), 0 \leq x \leq 1,0 \leq y \leq 1$. Suppose that $F=(x,-2 y, z+3)$ and the outward flux of F across the side $x=1$ is 1 and across the side $y=1$ is -3 . Find the outward flux across the top.

Solutions:

Since $\operatorname{div} F=0$, according to the divergence theorem, the total outward flux of F is 0 . Hence it suffices to calculate the outward fluxes across the other five sides. We have known the fluxes across the sides $x=1, y=1$, so we only need to find the fluxes across the sides $x=0, y=0, z=0$, which are denoted by S_{1}, S_{2}, S_{3}. We have

$$
\begin{aligned}
& \int_{S_{1}} F \cdot n \mathrm{~d} S=0 \\
& \int_{S_{2}} F \cdot n \mathrm{~d} S=0 \\
& \int_{S_{3}} F \cdot n \mathrm{~d} S=-3
\end{aligned}
$$

Therefore the flux of the top is 5 .
5. Prove the vector field identities:
(a) $\nabla \times\left(F_{1} \times F_{2}\right)=\left(F_{2} \cdot \nabla\right) F_{1}+\left(\nabla \cdot F_{2}\right) F_{1}-\left(F_{1} \cdot \nabla\right) F_{2}-\left(\nabla \cdot F_{1}\right) F_{2}$;
(b) $\nabla\left(F_{1} \cdot F_{2}\right)=\left(F_{1} \cdot \nabla\right) F_{2}+\left(F_{2} \cdot \nabla\right) F_{1}+F_{1} \times\left(\nabla \times F_{2}\right)+F_{2} \times\left(\nabla \times F_{1}\right)$,
where $(F \cdot \nabla) G$ means directional derivatives along F for each component of G.

Solutions:

To make the proof clear we use X and Y to denote the two vector fields and to simplify the notations we use $f_{, i}$ to denote $\partial_{i} f$. Moreover, since the three components are similar,
we only examine the first component.
(a) First

$$
X \times Y=\left(X^{2} Y^{3}-X^{3} Y^{2}, X^{3} Y^{1}-X^{1} Y^{3}, X^{1} Y^{2}-X^{2} Y^{1}\right)
$$

Then it follows that

$$
\begin{aligned}
& {[\nabla \times(X \times Y)]_{1} } \\
= & \left(X^{1} Y^{2}-X^{2} Y^{1}\right)_{, 2}-\left(X^{3} Y^{1}-X^{1} Y^{3}\right)_{, 3} \\
= & Y^{2} X_{, 2}^{1}+Y_{, 2}^{2} X^{1}-X^{2} Y_{, 2}^{1}-X_{, 2}^{2} Y^{1}-X^{3} Y_{, 3}^{1}-X_{, 3}^{3} Y^{1}+Y^{3} X_{, 3}^{1}+Y_{, 3}^{3} X^{1} \\
= & \left(Y^{2} X_{, 2}^{1}+Y^{3} X_{, 3}^{1}\right)+\left(Y_{, 2}^{2} X^{1}+Y_{, 3}^{3} X^{1}\right) \\
& \quad-\left(X^{2} Y_{, 2}^{1}+X^{3} Y_{, 3}^{1}\right)-\left(X_{, 2}^{2} Y^{1}+X_{, 3}^{3} Y^{1}\right) \\
= & (Y \cdot \nabla) X^{1}+(\nabla \cdot Y) X^{1}-Y^{1} X_{, 1}^{1}-Y_{, 1}^{1} X^{1} \\
& \quad-(X \cdot \nabla) Y^{1}-(\nabla \cdot X) Y^{1}+X^{1} Y_{, 1}^{1}+X_{, 1}^{1} Y^{1} \\
= & (Y \cdot \nabla) X^{1}+(\nabla \cdot Y) X^{1}-(X \cdot \nabla) Y^{1}-(\nabla \cdot X) Y^{1} .
\end{aligned}
$$

(b) First

$$
\nabla \times Y=\left(Y_{, 2}^{3}-Y_{, 3}^{2}, Y_{, 3}^{1}-Y_{, 1}^{3}, Y_{, 1}^{2}-Y_{, 2}^{1}\right)
$$

Then

$$
\begin{aligned}
{[X \times(\nabla \times Y)]_{1} } & =X^{2}\left(Y_{, 1}^{2}-Y_{, 2}^{1}\right)-X^{3}\left(Y_{, 3}^{1}-Y_{, 1}^{3}\right) \\
& =X^{2} Y_{, 1}^{2}+X^{3} Y_{, 1}^{3}-(X \cdot \nabla) Y^{1}+X^{1} Y_{, 1}^{1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
{[Y \times(\nabla \times X)]_{1} } & =Y^{2}\left(X_{, 1}^{2}-X_{, 2}^{1}\right)-Y^{3}\left(X_{, 3}^{1}-X_{, 1}^{3}\right) \\
& =Y^{2} X_{, 1}^{2}+Y^{3} X_{, 1}^{3}-(Y \cdot \nabla) X^{1}+Y^{1} X_{, 1}^{1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& {[X \times(\nabla \times Y)]_{1}+[Y \times(\nabla \times X)]_{1}+(X \cdot \nabla) Y^{1}+(Y \cdot \nabla) X^{1} } \\
= & X^{1} Y_{, 1}^{1}+X^{2} Y_{, 1}^{2}+X^{3} Y_{, 1}^{3}+Y^{1} X_{, 1}^{1}+Y^{2} X_{, 1}^{2}+Y^{3} X_{, 1}^{3} \\
= & (X \cdot Y)_{, 1} .
\end{aligned}
$$

Remark 1

Another method could also deal with vector field identities. First we have the following observations. Let $\varepsilon_{i j k}$ be the sign of the permutation $(i j k)$ (if $(i j k)$ contains repeated elements, then $\varepsilon_{i j k}=0$). Then

$$
(X \times Y)_{i}=\sum_{j k} \varepsilon_{i j k} X^{j} Y^{k}
$$

$$
(\nabla \times X)_{i}=\sum_{j k} \varepsilon_{i j k} X_{, j}^{k}
$$

Moreover

$$
\sum_{i} \varepsilon_{i j k} \varepsilon_{i s t}=\delta_{j s} \delta_{k t}-\delta_{j t} \delta_{k s}
$$

where

$$
\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Now we use these facts to prove (a) as an example.

$$
\begin{aligned}
{\left[\nabla \times\left(F^{1} \times F^{2}\right)\right]_{i} } & =\sum_{j k} \varepsilon_{i j k}\left(F^{1} \times F^{2}\right)_{, j}^{k} \\
& =\sum_{j k s t} \varepsilon_{i j k} \varepsilon_{k s t}\left(F_{s}^{1} F_{t}^{2}\right)_{, j} \\
& =\sum_{j s t}\left(\delta_{i s} \delta_{j t}-\delta_{i t} \delta_{j s}\right)\left(F_{s}^{1} F_{t}^{2}\right)_{, j} \\
& =\sum_{j}\left(F_{i}^{1} F_{j}^{2}\right)_{, j}-\sum_{j}\left(F_{j}^{1} F_{i}^{2}\right)_{, j} \\
& =\sum_{j} F_{j, j}^{2} F^{1}+\sum_{j} F_{j}^{2} F_{i, j}^{1}-\sum_{j} F_{j, j}^{1} F_{i}^{2}-\sum_{j} F_{j}^{1} F_{i, j}^{2} \\
& =\left(\nabla \cdot F^{2}\right) F_{i}^{1}+\left(F^{2} \cdot \nabla\right) F_{i}^{1}-\left(\nabla \cdot F^{1}\right) F_{i}^{2}-\left(F^{1} \cdot \nabla\right) F_{i}^{2}
\end{aligned}
$$

